
A CAUTIONARY NOTE REGARDING

THE DATA INTEGRITY CAPACITY

OF CERTAIN SECURE SYSTEMS

Cynthia E. Irvine

Naval Postgraduate School

irvine@cs.nps.navy.mil

Timothy E. Levin

Naval Postgraduate School

levin@cs.nps.navy.mil

Abstract The need to provide standard commercial-grade productivity applica-

tions as the general purpose user interface to high-assurance data pro-

cessing environments is compelling, and has resulted in proposals for

several di�erent types of \trusted" systems. We characterize some of

these systems as a class of architecture. We discuss the general integrity

property that systems can only be trusted to manage modi�able data

whose integrity is at or below that of their interface components. One

e�ect of this property is that in terms of integrity these hybrid-security

systems are only applicable to processing environments where the in-

tegrity of data is consistent with that of low-assurance software. Sev-

eral examples are provided of hybrid-security systems subject to these

limitations.

Keywords: integrity, con�dentiality, integrity capacity, secure system, multi-level

security

1. Introduction

Data integrity is de�ned as \the property that data has not been

exposed to accidental or malicious alteration or destruction." [29] A

common interpretation is that high integrity information can be relied

upon as the basis for critical decisions. However, the protection of

high-integrity data in commercial systems has been both problematic

to achieve and often misunderstood.

1



2

High Assurance Systems are designed to ensure the enforcement of

policies to protect the con�dentiality and integrity of information. To

date, high-assurance systems have been expensive to produce and often

lack support for, or compatibility with, standardized user-level applica-

tions. Hybrid security systems are intended to provide some desired func-

tionality with high assurance of correct policy enforcement by utilizing a

combination of high-assurance policy-enforcement components and low-

assurance user interface and application components, thus addressing

both the expense and compatibility problems typical of high-assurance

systems.

In an era when users demand the productivity enhancements a�orded

by commercial software application suites, hybrid security architectures

are of particular interest. Extensive study has demonstrated that hy-

brid security architectures using commercial user interface components

can correctly enforce intended con�dentiality policies, e.g. [25]. Less

attention has been directed toward the e�ect of commercial user inter-

face software on the integrity of data managed through those interfaces.

Concerns include the integrity of the data modi�ed using these commer-

cial interfaces and then stored by high assurance components, as well as

the integrity of data read from high assurance repositories and displayed

to users.

While some developers have indicated that this problem is something

\we have always known about," the problem may not be fully appreci-

ated by the consumers of these systems. Our premise is that builders

and buyers of systems designed to provide high assurance enforcement

of security policies should be aware of the impact of component and ar-

chitectural choices on the integrity of data that users intend to protect.

Although the problem is exacerbated in systems designed to implement

mandatory integrity models, such as represented by the Biba model [8],

it is also signi�cant in systems intended to support con�dentiality poli-

cies. The former systems have explicit integrity requirements, whereas

the latter may have implicit integrity expectations.

1.1 Contributions of this Paper

There is a large body of existing literature regarding integrity en-

forcement, requirements, and models; most of these address access con-

trol and related integrity issues, but do not address integrity capacity

problems of system composition.

The National Research Council report on \Trust in Cyberspace" [31]

identi�es the construction of trustworthy systems from untrustworthy

components as a \holy grail" for developers of trustworthy systems. And



Data Integrity Capacity of Secure Systems 3

a National Computer Security Center guideline[30] that addresses both

integrity and con�dentiality issues, states that \the ability to run un-

trusted applications on top of TCBs 1 without undue loss of security

is one of the major tenets of trusted computer systems." One of the

primary results of our paper is to clarify the limitations of a signi�cant

class of these approaches with respect to integrity.

In this paper we examine integrity capabilities of component-based

systems and provide a rigorous de�nition of system integrity capacity.

This de�nition can form a basis for reasoning about systems with respect

to their suitability for integrity policy enforcement. We also provide

examples of several contemporary research-level security systems that

exhibit the integrity capacity problem.

Finally, we provide a general conclusion regarding the integrity limi-

tations of hybrid-security system composition: namely, system compo-

sition is problematic with respect to maintenance of high integrity data

when utilizing commercial-grade products for user interfaces and appli-

cations.

1.2 Organization

The remainder of this paper is organized as follows. Section 2 pro-

vides a brief discussion of some related e�orts involving security and

integrity. We review concepts associated with con�dentiality, integrity,

and assurance in Section 3. Integrity considerations regarding system

components and abstract subjects are discussed in Section 4. Section

5 presents the notion of \system integrity capacity," and Section 6 pro-

vides a derivation of this capacity for hybrid security systems, several of

which are described. Our conclusions, in Section 7, complete the body

of the paper. A discussion of malicious artifacts in commercial systems

is included in Appendix 7.

2. Related Work

The architectural integrity issues we discuss have been addressed only

indirectly in the literature. For example, the Seaview papers ([13], etc.)

make it clear that the reference monitor will enforce integrity constraints

on its subjects, such as the relational database management component;

however, they do not explain that the use of a B1-level 2 RDBMS com-

1Trusted Computing Base[28]
2The terms used in this paper to reect the evaluation class of systems and components are

taken from [28] (e.g., B1 and B2) and [2] (e.g., EAL5).



4

ponent as the interface to users will limit the integrity range of data that

the system can support.

The key issue addressed in our paper is how a system manages mod-

i�able data. The Biba integrity model includes the restriction that a

subject may modify an object only if the subject's integrity label \dom-

inates" the object's integrity label. This and related characteristics of

the \strict" integrity model are discussed extensively in the literature,

starting with [8].

\Program integrity" [39] is related to strict Biba integrity, encompass-

ing all of the restrictions of Biba integrity except for those related to the

reading of �les, while retaining restrictions for the execution of �les.

Strict integrity treats execution as a form of reading, whereas program

integrity treats them separately [36]. Program integrity is of interest be-

cause it can be enforced with simple ring-bracket mechanisms [37], and

results in \dominance" or \protection" domains, which can be used to

enforce the relationships between the components, subjects and objects

discussed in Section 4.

Lipner [24] applies Biba integrity to a real-world business scenario,

working through the consistent application of hypothetical integrity la-

bels in the context of a Biba mechanism to protect commercial data from

unauthorized modi�cation. This presentation does not address system

level integrity problems resulting from the utilization of components with

various integrity/assurance levels.

In contrast to low water-mark models, e.g. as discussed in [8], which

address changes to the integrity level of a subject as it accesses objects

with various integrity levels, we examine how the integrity value of data

is a�ected as it is passed through data-modifying components with het-

erogeneous integrity properties.

Boebert and Kain [9] recognize the asymmetry of con�dentiality and

integrity, and remark on the vulnerability of information to corruption

when only program integrity is enforced. Their work focussed on the use

of domain and type enforcement to construct \assured pipelines" where

the integrity level of data is changed as it moves through the pipeline.

It does not discuss how software could present intrinsic limitations on

the integrity of data to be processed.

Clark and Wilson [11] present a model for the protection of data

integrity in commercial systems. In that model, components that modify

data or handle user input must be \certi�ed." However, their model does

not address the relative integrity of the components and the data, nor

does it address the resulting limits to the integrity of data that could be

processed by such a system.



Data Integrity Capacity of Secure Systems 5

With respect to the problem of how to determine integrity labels for

objects, Amoroso [4] relates evaluation assurance to software integrity,

describing a broad range of (integrity) classes for articulating software

trust. Karger suggests that a representation of literal evaluation levels

could be used for integrity labels[19].

3. Background

This section sets the context for the presentation of system integrity

capacity and attendant problems. Several concepts are examined in re-

lation to integrity, including con�dentiality, data versus code, assurance

and trust, and multilevel security and the Biba model.

3.1 Integrity and Con�dentiality

A given piece of information will have a con�dentiality value as well as

a separate integrity value . That is, there will be separately measurable

e�ects (e.g., harm to the information owner) from the leakage vs. the

corruption of the information. This is the case whether or not the data

has been explicitly labeled with con�dentiality and integrity designations

(as is done in a multilevel-secure system). These labels may indicate

both the degree with which we intend to protect the data as well as our

assessment of the data's intrinsic value or sensitivity. The labels may

or may not correspond to the actual integrity or con�dentiality value

of the data (in general, multilevel security models address the security

values of the data; whereas the security labels are an implementation

issue).

Integrity is, in many ways, the \dual" of con�dentiality. Both integrity

and con�dentiality policies can be represented with labels that represent

equivalence classes whose relationships form a lattice [41, 14]. Access

control policy decisions can be based on the relative position of labels

within a given lattice. Increasing the con�dentiality \level" given to a

subject (e.g., user) generally expands the set of objects that the subject

may view; but an increase in integrity may contract the set of objects

that a subject may view. Such semantic \inversions," and the sometimes

non-symmetric nature of integrity and con�dentiality properties (e.g.,

see [9]) can make their di�erences di�cult to reason about. As a result,

the analysis of integrity may be overlooked or avoided during the system

design or acquisition process, in favor of more familiar con�dentiality

analyses.



6

3.2 Integrity of Data and Code

Integrity values are associated with executable software (e.g., pro-

grams, object code, code modules, components) as well as with passive

data. In both cases, the integrity value relates to how well the data or

program corresponds to its uncorrupted/unmodi�ed original value (e.g.,

manufactured, installed, or shipped image). For programs, integrity

also describes how well a program's behavior corresponds to its intended

behavior (e.g., documented functionality or design documentation), in-

cluding the notion that the code does not provide functionality beyond

that which was intended (e.g., contain hidden behavioral artifacts). So,

\integrity" means that the code has been unaltered, or is faithful to its

origin, in both of these ways.

3.3 Assurance and Trust

Integrity of code is also closely related to \assurance" and \trust."

Products that have been through security evaluations [28][2] receive an

assurance-level designation. A methodical, high-assurance development

process may produce code with fewer aws, and consequently, behavior

that is closer to that which is intended, than a low-assurance develop-

ment process. Suitable security mechanisms and practices must also be

in place to ensure the ability of the system to protect itself and pro-

vide continued system integrity during operation. This reliable code is

sometimes called, or labeled, \high integrity;" it is also referred to as,

\high assurance" code. Based on this designation, the product may be

deemed suitable for handling data within a certain con�dentiality or in-

tegrity range. Systems or components with demonstrated capabilities

for security policy enforcement are sometimes called \trusted."

3.4 Multilevel Security

Multilevel systems partition data into equivalence classes that are

identi�ed by security labels. Data of di�erent sensitivities is stored in

di�erent equivalence classes, such that (the data in) some equivalence

classes are \more sensitive than," \more reliable than," or \dominate"

(the data in) other equivalence classes. The dominance relation forms a

lattice with respect to the labels/classes, assuming the existence of la-

bels for universal greatest lower bound, GLB, and universal least upper

bound, LUB. A reference validation mechanism (RVM, see \multilevel

management component" in Figures 1, 2 and 3), mediates access to ob-

jects, controlling object creation, storage, access and I/O, thereby pre-

venting policy-violating data \leakage" across equivalence classes. For



Data Integrity Capacity of Secure Systems 7

con�dentiality policy enforcement, a subject's (e.g., program or com-

ponent's) ability to write-down or read-up is prevented with respect to

the dominance relationship on con�dentiality labels; for Biba-model in-

tegrity, read-down and write-up are prevented with respect to the dom-

inance relationship on integrity labels. Most multilevel systems today

are designed to enforce con�dentiality constraints; some of these are also

designed to constrain ow between integrity equivalence classes.

4. Integrity of Components and Subjects

The purpose of this section is to examine how integrity is interpreted

with respect to the fundamental building blocks of secure systems.

The abstract architecture we are interested in is one of distributed

storage, processing, and interconnection \components." A component is

a functional system-level building block made up of software, �rmware,

hardware or any combination of these. Multiple components may reside

on a single computer, but for simplicity's sake, we will assume that a

single component does not encompass multiple remotely-coupled com-

puters. Examples of components are shown in Section 6, and include

a relational database management system, a security kernel, a client

user application, an application server, and a graphical user interface

program.

A component can include multiple code modules. The modules may

be linked within a process, statically by a compiler/linker, or may have

a more dynamic, runtime, linkage. A component can also encompass

multiple processes, interconnected through message-passing, remote in-

vocation, or other mechanisms.

Subjects are a modeling abstraction for reasoning about the security

behavior of active computer elements such as programs and processes. A

primary criteria for identifying a set of active computer elements together

as a subject is that each subject has identi�able security attributes (e.g.,

identity and security level) that are distinct from other subjects. If

the security attributes change over time, the elements are sometimes

modeled as a di�erent subject.

A component may manifest one or more subjects at a time. Each

subject may encompass one or more of the component's modules, for

example when they are linked within the same process. In a monolithic

architecture, subjects may be identi�ed with separate rings, or privilege

levels, of a process [28], especially if the program has di�erent security

characteristics in the di�erent rings. Typical systems support con�den-

tiality and integrity labels for abstract subjects that are distinct from the

labels on related components and modules (an alternative design would



8

be to derive the subject label directly from the �xed component label).

For example, the assignment of a subject label may be a mapping from

the user's current \session level" to the subject representing the user.

There are semantic limitations on this assignment with respect to the

integrity level of the related modules and components.

4.1 Relation of Component and Subject
Integrity

First we consider con�dentiality. A subject may be associated with a

particular con�dentiality equivalence class for enforcement of mandatory

access control. The mandatory con�dentiality policy is not concerned

with what happens between subjects and objects that are in the same

con�dentiality equivalence class: all reads and writes are allowed. The

con�dentiality policy is only concerned with what happens when a sub-

ject attempts to access an object in another equivalence class. We can

interpret the subject reading data from a (source) equivalence class as

moving data from that source into the subject's (destination) equiva-

lence class, and writing to a (destination) equivalence class as moving

data from the subject's (source) equivalence class to the destination

equivalence class. The con�dentiality policy says that when data is

moved, the con�dentiality label of the destination must always domi-

nate the con�dentiality of the source (again, data cannot move down in

con�dentiality).

In contrast, while the integrity policy, too, is concerned with move-

ment of data across equivalence classes (the integrity label of the source

must dominate the integrity of the destination), this policy is also con-

cerned with the correctness of modi�cations, such that even if the subject

is in the same equivalence class as the destination object, the modi�ca-

tion must be that which has been requested: the allowed (e.g., intra-

equivalence-class) modi�cations must be the correct, intended, modi�-

cations. The tacit assumption in integrity-enforcing systems is that the

subject performs the correct modi�cation (only) to its level of integrity

(or assurance, if you will). Since an abstract subject's behavior is de�ned

by its code, for coherent enforcement of integrity, the level of integrity

assigned to the subject must be no higher than the integrity value of its

code.

Components may not always receive an explicit security label, even

in a system with labeled modules and other objects. Components may

be composed of modules with di�erent security labels. It is conceiv-

able that a given component could be composed of both high-integrity

and low-integrity modules, such that subjects with di�erent integrity are



Data Integrity Capacity of Secure Systems 9

supported by only modules of that same integrity. This would conform

to the requirement stated above that a subject's integrity should be no

greater than the integrity of its code. However, most commercial compo-

nents are not constructed this way. The simplifying assumption for this

analysis is that modules within a given component are homogeneous with

respect to their integrity, and the integrity of a component is the same

as the integrity of its constituent modules. Thus, we can can generalize

the stated requirement to be that the level of integrity assigned to an

abstract subject must be no greater than the integrity of the component

that manifests the subject.

Combining this component-subject integrity relationship with the subject-

object integrity relationship required for data modi�cation (as per the

Biba model, above), we arrive at a transitive relationship between the

integrity of components and the objects which they access:

Given the sets of Components, Subjects, and Objects, where each sub-

ject in Subjects is an element of one component:

8 c 2 Components ; s 2 Subjects ; o 2 Objects :

current access(s; o;modify) and s 2 c )

integrity(c) � integrity(s) � integrity(o)

Systems that enforce integrity policies are generally intended to au-

tomatically ensure the correct relationship between the integrity level

of subjects and the integrity level of accessed objects. However, the

enforcement of the relationship between a subject's integrity and its

component's integrity may be less clear. Some systems may be able

to enforce the relationship between the integrity of subjects and their

related modules. For example, this could be enforced by Biba-like la-

bels on executables or other program integrity mechanisms such as rings

[38] and ring brackets [1] which can also be represented as attributes

on system elements. If these relationships are not enforced during run-

time, then the correct relationships may need to be maintained by social

convention/procedure.

The relationship between the integrity of a component's subjects and

the integrity of the non-software portion of the component is also en-

forced via social convention (again, component integrity must dominate

the subject integrity).

4.2 Component Integrity Labels

This leaves the question of correct integrity labeling of components

(and modules). Con�dentiality and integrity labels of passive data ob-

jects can be correctly assigned based on the data owner's perception of



10

the object's sensitivity (e.g., harm caused by unauthorized disclosure or

modi�cation).

For active objects (viz, code rather than data) integrity labels, as

well as con�dentiality labels, are usually assigned by the system or net-

work security designer to maximize system security and functionality

while being consistent with the principle of least privilege [35]. Best

judgment may play a large role in this assignment. For example, if

a monolithically-compiled software component is made of up diversely-

assured internal modules, it may be the responsibility of a designer,

integrator or con�guration manager, as stipulated by social convention

or procedures, to assign an appropriate integrity level to the executable

component. However, the pedigree of the code establishes a real-world

limit to the integrity label that can be associated with a component.

Intuitively, code that has unknown integrity characteristics, e.g., it is

found on the street, should not be accorded a high-integrity label.

The \Yellow Book"[27] is an example of a scheme for determining

con�dentiality ranges based on the evaluation or assurance level of the

components involved, where higher assurance components are allowed to

be associated with greater con�dentiality ranges. However, there is no

\Yellow Book" for integrity to show what integrity label should be al-

lowed or inferred for a code component based on its evaluation/assurance

level, although some schemes have been suggested[4, 19].

4.3 Commercial Application Component
Integrity

Commercial application components are of particular interest with re-

spect to correct integrity labeling in hybrid security architecture systems

(see Section 6). We de�ne commercial application components to have

been either unevaluated with respect to security policy enforcement, or

evaluated below Class B2/EAL53. In the security and evaluation com-

munity, components evaluated below B2/EAL5 have historically been

considered to be \low assurance" (see, for example, [22]). This is so for

several reasons [28, 2]:

Weak developmental assurance, for example to ensure that un-

intended malicious artifacts (e.g., Trojan horses and trap doors)

are not inserted during manufacture. There is no or very little

requirement for system con�guration management. There is no

requirement for con�guration management of development tools.

3As there have been few, if any, commercial applications evaluated at B2 or higher, we

consider this to be a conservative, non-exclusionary, de�nition.



Data Integrity Capacity of Secure Systems 11

Little or no code analysis, and no examination of code for malicious

artifacts after manufacture (i.e., during evaluation). There is no

requirement for code correspondence 4 to the system speci�cation

or for justi�cation of non-policy-enforcing modules. There is no re-

quirement for internal structure (e.g., modularity or minimization)

which would enable the meaningful analysis of code functionality.

Weak assurance that malicious artifacts are not inserted after man-

ufacture. For example, there is no requirement for trusted distri-

bution procedures: no assurance that the system delivered to the

end customer is in fact the intended or speci�ed system.

Recall that the semantics of a code integrity label includes an indi-

cation of how its behavior corresponds to an intended (e.g., speci�ed)

behavior. The fact that there is little assurance that code that has been

evaluated below B2/EAL5 functions (only) the way it is supposed to,

indicates that there must be a corresponding limit to the value of an

integrity label associated with such code (see Appendix 7). We will call

this integrity limit, nominally, \low assurance," and assert that compo-

nents evaluated below B2/EAL5 should be labeled at this, or some lower

level. Similarly, code that has not been evaluated at all would be at-

tributed with a (nominal) \no assurance" integrity label. The names of

these two labels or the precise evaluation class names are not signi�cant;

rather, it is signi�cant to the maintenance of data integrity in hybrid se-

curity systems that site security managers/administrators, data owners,

and other security policy stake-holders understand the integrity value of

their systems' components and of the data entrusted to these systems.

c1 trans c2

5. Security System Data Capacities

In this section, the notion of system integrity capacity will be intro-

duced. This term relates to the ability of a system to handle high-

integrity data.

The network architecture of a multilevel system can help to ensure

that the actions of other components are constrained by its RVM, for

example, through limiting the interconnections or data paths allowed

between components. In the architectures discussed in this paper, the

separation of data is maintained by either: (1) partitioning the data (and

processing elements) into distinct physical equivalence classes and using

4Mapping of each speci�ed function to the code that implements it, and accounting for

unmapped code.



12

the RVM to ensure that the security level of the user session matches

the security level of the class with which it is connected (e.g., Figure 2),

or (2) using the RVM to logically partition the di�erent data equiva-

lence classes and to match the user session level to only the appropriate

domain(s) (see Figures 1 and 3).

Our central question is, \for what range of user data 5 can we trust

such a multilevel system, or any system, to maintain data separation?"

Clearly, we would not want to trust a very weak system to protect/separate

very highly sensitive information. While our focus is on integrity-related

issues, for comparison we will examine cases of both con�dentiality and

integrity.

5.1 Con�dentiality Capacity

For con�dentiality, a multilevel system can be trusted to manage data

to the con�dentiality range of its RVM. We call this the system con�den-

tiality capacity. For example, if the system's RVM component is assigned

or is otherwise deemed capable of managing a range from Unclassi�ed

to Secret, we can say the system as a whole is trusted to handle data in

that range. This is because the RVM will constrain the actions of the

other components to not leak data across equivalence classes, regardless

of the level of trust we have in those other components (given a coherent

network architecture). To state con�dentiality capacity more formally,

consider a system, C, comprising a set of components, fcg, and let RVM

be a component in C that enforces the con�dentiality policy on other

components. Then,

c capacity(C) = c capacity(RVM)

5.2 Integrity Capacity

For integrity, on the other hand, a system can be trusted to manage

modi�able data (only) to the integrity limit of its interface components,

where interface components include the various graphical user interfaces

and data management applications through which users' data must pass.

This is the \system integrity capacity."

System integrity capacity is di�erent from (i.e., not the \dual" of)

system con�dentiality capacity because we assume that a component

will handle modi�cation of objects correctly, only to its level of in-

tegrity/assurance. For con�dentiality, even if a non-RVM component

were infected with malicious code, it could not ex�ltrate the informa-

tion across the equivalence-class boundary, because the RVM component

5The ability of a system to protect and maintain system data is not addressed in this paper.



Data Integrity Capacity of Secure Systems 13

won't let that happen. However, for integrity, once the component has

approval for modify access, the RVM is powerless to ensure that the

correct, and only the correct, modi�cations are made. Therefore, the

assurance level of the individual (viz, non-RVM) component has bear-

ing on its assigned integrity label, but is not necessarily relevant to its

assigned con�dentiality label.

The input and output mechanisms of a computer system limit the

quantity and quality of information that ows through the system, just

as the in- and out-ow of water and electricity are limited in hydraulic

and electrical systems by their interface devices.

For computers, the I/O mechanisms and related applications, by def-

inition, handle all data entering and leaving the system. Where those

mechanisms and applications are con�gured to be able to modify data,

they can potentially e�ect the integrity of the data entering and leaving

the system. The nature of this e�ect is as follows.

De�nitions

C : the universal set of components fc1; c2; � � � ; cng

O : the universal set of objects fo1; o2; � � � ; omg

INTEGRITY : a lattice of integrity levels:

fintegrity1; integrity2; � � � ; integrityqg

modify : a relation that de�nes the fact that a component

c 2 C has been used to to modify an object o 2 O

SYS : a system comprised of a set of components c 2 C

Axiom 1

A modi�ed datum is either unchanged in integrity, or takes on an in-

herent integrity value dominated by the integrity of the data-modifying

component.

8 c 2 SYS; o 2 O : modify(c; o)) integrity(c) � integrity(o0)

For example, if a \certi�ed" datum is modi�ed by an \untrusted" code

component, the modi�ed datum becomes at best \untrusted," assuming

that \certi�ed" dominates \untrusted." If an \untrusted" datum is mod-

i�ed by a \certi�ed" component, the datum becomes at best \certi�ed,"

indicating it might have been upgraded in integrity.

For a high-assurance integrity-enforcing system, subjects, including

the applications that manage user I/O, will be limited by the RVM from

modifying protected objects that are above the subject's integrity level.

However, if the application is responsible for passing data from one of

those objects to, for example, an output device like the computer screen,



14

then the application can simply modify the data in passing without

modifying the source object.

Similarly, even if a component does not modify the data directly, it

may request that the modi�cation be done by another component, for

example, where a user interface component requests from another (e.g.,

remote) component that an object be created on behalf of the user.

Since the requesting component might request the wrong modi�cation,

we consider it to be a \data-modifying" component. So a system's \data-

modifying" components are those components that are able to modify

or control the modi�cation of user data. In general, all interface com-

ponents and other components on the \path" between the user who

requests a data access and the ultimate data source (for data reads) or

destination (for data writes) are \data-modifying" components, unless

they can be guaranteed to not modify, create or delete user data objects

or control such operations6.

Therefore, even for systems that enforce integrity policies, a computer

system can only be trusted to manage modi�able data whose integrity

is at or below that of its user interface and application components.

This is true even if the data is either (1) integrity-upgraded internally

by various components, (2) \hand installed" into high integrity internal

objects, or (3) imported from specialized high integrity sensing devices,

since to be useful, the data will once again be \handled" by the standard

interface and application components for access by users. We will note

that, theoretically, manual procedures, such as visual inspection of data

items retrieved from a hybrid security system, could be used to ensure

that processing corruption has not occured, however, this is not generally

feasible in commercial or production environments.

As a group, then, the interface components and associated applica-

tions determine the integrity limit of the data that a system can handle

(i capacity). The interface components are a subset of SYS, indicated
SYSinterface, and the highest integrity data obtainable from a system

SYS is by way of the user interface component with the highest integrity

(viz, the least upper bound of the integrity of all interface components).

i capacity(SYS) =
LUB

c 2 SYSinterface

 
integrity(c)

!

This gives a \best case" analysis for the integrity that we might expect

a system to handle. For example, a high integrity interface application,

6The \control" part of this de�nition makes it broader than the Bell and LaPadula[7] concept

of \current access," which indicates only objects with direct access to data.



Data Integrity Capacity of Secure Systems 15

were it to be available, dependent upon a low integrity database, would

not normally improve the integrity of data returned from the database to

the user, although this expression of system integrity capacity would in-

dicate that the data accessed through the high integrity interface might

be of high integrity. The general case is that the i capacity expression

must allow for such upgrades. However, not all systems are designed for

data integrity upgrades. A more conservative axiom regarding modi�ca-

tion, which does not consider upgrading, results in an i capacity based

on the lowest integrity of the components in each path.

Axiom 2

A modi�ed datum takes on an inherent integrity value that is the great-

est lower bound of the data and the data-modifying component.

8 c 2 C ; o 2 O : modify(c; o))

integrity(o0) = GLB(integrity(c); integrity(o))

We now de�ne an individual data transfer within the system, a path

through the system, and the integrity of such a path.

trans: A relation on C �C that de�nes an individual transfer of data

between components. Data is passed directly from the origin component,

ci, to the terminus component, cj :
ci trans cj

path: A sequence of trans relations such that for every pair of consec-

utive relations (ci trans cj , cj trans ck), the terminus of the �rst and

the origin of the second coincide[34]. For example, this is a path with

n relations: < c0 trans1 c1; c1 trans2 c2; � � � ; cn�1 transn cn >

The integrity of a path is the greatest lower bound of the components

in the path:

integrity(path) =
GLB
c 2 path

 
integrity(c)

!

Given these de�nitions, we provide the alternative, more conservative,

expression for i capacity.

Let �(SYS) be the set of all paths in SYS whose origin or terminus

is in SYSinterface, then:

i capacity(SYS) =
LUB

path 2 �(SYS)

 
integrity(path)

!



16

6. Hybrid Security Systems

The systems we are concerned with are those that combine low-assurance

commercial components and specialized (e.g., high-assurance) multilevel

components speci�cally to enforce mandatory security policies while us-

ing commercial user-level interfaces and applications. These systems, as

a class, are composed of the following components:

commercial terminals or workstations

commercial user interfaces, applications and application servers

Storage devices containing multiple levels of data

Multilevel-management components

TCB Extensions

commercial network interconnections

The interested reader is referred to [17] for a detailed description of

these components. Of particular note, however, is the description of ap-

plications. In the generic \hybrid security" architecture de�ned in [17],

applications interface with the user and participate in the management

of all user data. Speci�cally, the application components have the abil-

ity to modify data on behalf of the user (which is to say that read-only

systems are not of interest). The general functionality of commercial

applications such as word processing, spread sheet, slide presentation,

time management, and database tools indicate that, to be useful, they

are intended to modify, as well as read, data.

To illustrate the relevance of our concerns for the handling of high in-

tegrity data in hybrid security systems, we describe here several systems

from the security literature that exhibit dependence on the integrity of

commercial components.

A non-distributed version of the model architecture is shown in Fig-

ure 1. In this layout, the component interconnections consist of process-

internal communications. The lowest layer (viz, \ring") of the process

is a multilevel kernel or operating system, with an application (e.g.,

multilevel-aware RDBMS) and user interface in higher layers. A sepa-

rate process is created for each security level. An example of this version

of the architecture is that of the Seaview project [15, 25], and \Purple

Penelope" [33] (the latter includes a degenerate case of a RVM). A vari-

ation on this theme is the trusted Virtual Machine Monitor (VMM)

architecture, in which a separate version of the OS, in addition to the

application and user interface, is created at each security level[20, 26, 6],

and multilevel management occurs below that in the VMM layer.



Data Integrity Capacity of Secure Systems 17

COTS
User Interface

COTS
Applications

COTS
User Interface

COTS
Applications

Storage
Devices

Low
to
High

Low High

Not Trusted

Trusted

Validation
Reference

Mechanism

Figure 1. Single Process Architecture (Network Connections are degenerate.)

A simple distributed instantiation is shown in Figure 2. Here, there

are logically separate single-level workstations connected by a switch to

data management subsystems at di�erent (single) levels. Software asso-

ciated with the switch ensures that the current level of the workstation

matches the level of data subsystem indicated by the switch setting. An

example of this version of the architecture is that of the Starlight project

[5] (Starlight may allow low con�dentiality information to ow through

the switch to high sessions, providing \read-down" capability).

The third instantiation of the model architecture is shown in Fig-

ure 3. In this layout, there are logically separate single-level terminals

(multiplexed onto one physical terminal by purging of state between

session-level changes) connected via TCB extensions to multilevel-aware

application server(s) running on the multilevel (TCB) component. An

example of this version of the architecture is that of the Naval Postgrad-

uate School's Monterey Secure Architecture (MYSEA) system, based on

[18].

6.1 Integrity Capacity of Hybrid Security
Systems

Based on the preceding discussion, the system integrity capacity of

hybrid security systems can be summarized as follows:



18

Storage
Devices

COTS Application
Server

Storage
Devices

COTS Application
Server

Not Trusted

Trusted

COTS Client
User Interface

Low

High

Low Network

High Network

Validation
Reference

Mechanism

Figure 2. Switch-Based Architecture

User Interface
COTS Client

TCB Extension

User Interface
COTS Client

TCB Extension

User Interface
COTS Client

TCB Extension

User Interface
COTS Client

TCB Extension

Storage
Devices

Low
to
High

Mechanism

Not Trusted

Trusted HighLow

Low

High

Application
Server

Validation
Reference

Figure 3. Distributed Multilevel Server Architecture

A system's integrity capacity is the LUB of the integrity of its

interface/application components.

All interface/application components in hybrid security systems

are commercial

Commercial interface/application components are of \no assur-

ance" or \low assurance" integrity.



Data Integrity Capacity of Secure Systems 19

Therefore, the system integrity capacity of a hybrid security system

is generally no higher than \no assurance" or \low assurance."

An implication of this conclusion is that hybrid security architecture

systems are not suitable for automated information processing environ-

ments in which there are expectations or requirements to maintain data

integrity above the nominal \no assurance" or \low assurance" level. An-

other implication is that composition of trusted systems utilizing only

commercial products as interface components is problematic with respect

to integrity.

7. Conclusion and Discussion

We have shown that the integrity of a computer system's interface

components limits the data \integrity capacity" of the system. This

is in contrast to the \con�dentiality capacity" of a system, which is

determined by characteristics of the system's policy-enforcement com-

ponent(s), but is not dependent on the interface components.

We have discussed why commercial components should not be at-

tributed with integrity properties above a certain \low-assurance" level,

and that hybrid security systems should not be trusted with data whose

integrity is above that level. An implication from this conclusion is

that hybrid security systems are not suitable in computing environments

where there is an expectation of maintaining data integrity above this

basic, low-assurance level.

Situations where corrupted data could have signi�cant consequences

are:

A legal setting where the \truth" of data might be questioned

Handling of high integrity intelligence data for critical decision

making

The production of high assurance system components

Systems where human life might be a�ected by improper execution

of code

High reliability embedded systems

We have concentrated on issues of integrity in multilevel secure sys-

tems, however, the distinctions we have made are germane to other sys-

tems where weak integrity components are utilized and stronger data

integrity is expected.

One might say, \what di�erence does it make if a component has too

high of an integrity label, and its real integrity value is low? These



20

commercial software vendors can be generally trusted, since it is in their

best interest to ship a product that does not corrupt data." This atti-

tude reects a common misunderstanding of data integrity enforcement.

Certainly, most security analysts and engineers would agree that high-

assurance policy-enforcement components are needed to safeguard the

con�dentiality of highly sensitive multilevel data; then, why would there

be any lesser concern for the ability of a system to protect the integrity

of highly sensitive data? From a more technical viewpoint, if a system's

objects do not have data sensitivity (con�dentiality and integrity) labels

that match the objects' real sensitivity values, then the system does

not correspond to its model, and its behavior may be unde�ned. Also,

refer to Appendix 7, for a review of common \Subversive Artifacts in

Commercial Software."

The result presented in this paper places a limit on what is achievable

in system integrity architectures. Such a �nding can help to re�ne the

direction for constructive e�orts and does not preclude the construction

of useful systems any more than other negative results, e.g. [16, 21],

have in the past.

One might also ask if high integrity is ever achievable. The answer is

yes, but not with the type of commodity application components avail-

able today (viz, where commodity implies weak integrity of software

functionality). Systems that could provide high integrity today are (1)

a system composed entirely of high-assurance components, or (2) a sys-

tem that protects high integrity data from modi�cation by all but high-

assurance components. Examples of the �rst are systems intended to

perform safety-critical functions such as avionics and certain medical

systems[23]. An example of the second is a client-server system com-

posed of high-assurance client (e.g., web browser) and server components

that encrypt their communication such that it is protected from modi�-

cation during transit through low assurance network components (e.g.,

via a Virtual-Private-Network-style connection). As noted previously,

such systems carry the expense of custom high-assurance development.

Appendix: Subversive Artifacts in Commercial Soft-
ware

There is clear evidence that subversion of commercial software through hidden

entry points (trap doors) and disguised functions (Trojan horses) is more common

than generally perceived. Entire web sites [3] are devoted to describing clandestine

code which may be activated using undocumented keystrokes in standard commercial

applications. Sometimes this code merely displays a list of the software developers'

names. Other times the e�ects are extremely elaborate as in the case of a ight

simulator embedded in versions of the Microsoft Excel Spreadsheet software. That

these \Easter Eggs" are merely the benign legacy of the programming team is perhaps



Data Integrity Capacity of Secure Systems 21

a reection of the general good intentions of the programmers. Malicious insertions,

such as long-term time bombs, are just as easily possible.

An indication of the serious nature of the problem was provided in April 2000 when

news reports created a mild hysteria surrounding the possibility of a trapdoor in the

code of a widely used web server[32]. Subsequent investigations revealed that instead

of a trapdoor, the code contained nasty remarks about corporate competitors and

well as violations of company coding standards[12]. The fact remains, however, that

when rumors of the trapdoor were initially published, few believed that arti�ces of

this type were possible in such a popular software product. However, millions of users

do not eliminate the problem of low integrity. Another example of the vulnerability of

commercial source code occured in October 2000, when it was revealed that outsiders

had access to the development environment of a major software vendor for some

period of time[10].

In his Turing Prize Lecture, Ken Thompson described a trapdoor in an early

version of the Unix operating system [40]. The cleverness of the arti�ce was evident

in that the arti�ce was said to have been inserted into the operating system executable

code by the compiler, which had been modi�ed so that recompilations of the compiler

itself would insert the trapdoor implantation mechanism into its executable while

leaving no evidence of the trapdoor in the source code for either the operating system

or the the compiler. The presence of this sort of trap door is speculative in any

compiler and must be addressed through life-cycle assurance of tools chosen for high

assurance system development.

References

[1] Gemini Trusted Network Processor (GTNP). In Information Systems Secu-

rity Products and Service Catalog Supplement, Report No.CSC-PB-92/001. April

1992. 4-SUP-3a.3.

[2] ISO/IEC 15408 - Common Criteria for Information Technology Security Evalu-

ation. Technical Report CCIB-98-026, May 1998.

[3] The Easter Egg Archive. http://www.eeggs.com/, last modi�ed 19 May 2000.

[4] E. Amoroso, J. Watson, T. Nguyen, P. Lapiska, J. Weiss, and T. Star. Toward

an approach to measuring software trust. In Proceedings 1991 IEEE Symposium

on Security and Privacy, pages 198{218, Oakland, CA, 1991. IEEE Computer

Society Press.

[5] M. Anderson, C. North, J. Gri�n, R. Milner, J. Yesberg, and K. Yiu. Starlight:

Interactive Link. In Proceedings 12th Computer Security Applications Confer-

ence, San Diego, CA, December 1996.

[6] S. Balmer and C. Irvine. Analysis of Terminal Server Architectures for Thin

Clinents in a High Assurance Network. In Proceedings of the 23rd National In-

formation Systems Security Conference, pages 192{202, Baltimore, MD, October

2000.

[7] D. E. Bell and L. LaPadula. Secure Computer Systems: Mathematical Foun-

dations and Model. Technical Report M74-244, MITRE Corp., Bedford, MA,

1973.

[8] K. J. Biba. Integrity Considerations for Secure Computer Systems. Technical

Report ESD-TR-76-372, MITRE Corp., 1977.

[9] W. Boebert and R. Kain. A practical alternative to hierarchical integrity poli-

cies. In Proceedings 8th DoD/NBS Computer Security Conference, pages 18{27,

Gaithersburg, MD, September 1985.



22

[10] T. Bridis, R. Bickman, and G. Fields. Microsoft Said Hack-

ers Failed to See Codes for Its Most Popular Products.

http://interactive.wsj.com/archive/retrieve.cgi?id=SB972663334793858544.djm,

October 2000.

[11] D. Clark and D. R. Wilson. A Comparison of Commercial and Military Computer

Security Policies. In Proceedings 1987 IEEE Symposium on Security and Privacy,

pages 184{194, Oakland, CA, April 1987. IEEE Computer Society Press.

[12] R. Cooper. Re: Security experts discover rogue code in Microsoft software.

http://catless.ncl.ac.uk/Risks/20.88.html#subj11, May 2000.

[13] D. Denning, T. F. Lunt, R. R. Schell, W. Shockley, and M. Heckman. The seaview

security model. In Proceedings 1988 IEEE Symposium on Security and Privacy,

pages 218{233, Oakland, CA, April 1988. IEEE Computer Society Press.

[14] D. E. Denning. Secure Information Flow in Computer Systems. PhD thesis,

Purdue Univeristy, West Lafayette, IN, May 1975.

[15] D. E. Denning, T. F. Lunt, R. R. Schell, W. Shockley, and M. Heckman. Security

policy and interpretation for a class a1 multilevel secure relational database

system. In Proceedings 1988 IEEE Symposium on Security and Privacy, Oakland,

CA, April 1988. IEEE Computer Society Press.

[16] M. Harrison, W. Ruzzo, and J. Ullman. Protection in Operating Systems. Com-

munications of the A.C.M., 19(8):461{471, 1976.

[17] C. Irvine and T. Levin. Data integrity limitations in highly secure systems.

In Proceedings of the International Systems Security Engineering Conference,

Orlando, FL, March 2001.

[18] C. E. Irvine, J. P. Anderson, D. Robb, and J. Hackerson. High Assurance Multi-

level Services for O�-The-Shelf Workstation Applications. In Proceedings of the

20th National Information Systems Security Conference, pages 421{431, Crystal

City, VA, October 1998.

[19] P. Karger, V. Austel, and D. Toll. A new mandatory security policy combin-

ing secrecy and integrity. Technical Report RC 21717(97406), IBM Research

Division, Yorktown Heights, NY, March 2000.

[20] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn. A VMM

Security Kernel for the VAX Architecture. In Proceedings 1990 IEEE Symposium

on Research in Security and Privacy, pages 2{19. IEEE Computer Society Press,

1990.

[21] B. Lampson. A Note on the Con�nement Problem. Communications of the

A.C.M., 16(10):613{615, 1973.

[22] T. M. P. Lee. A Note on Compartmented Mode: To B2 or not B2? In Proceedings

of the 15th National Computer Security Conference, pages 448{458, Baltimore,

MD, October 1992.

[23] N. G. Levenson. Safeware- System safety and Computers. Addison-Wesley, 1995.

[24] S. B. Lipner. Non-Discretionary Controls for Commercial Applications . In Pro-

ceedings 1982 IEEE Symposium on Security and Privacy, pages 2{20, Oakland,

1982. IEEE Computer Society Press.

[25] T. F. Lunt, R. R. Schell, W. Shockley, M. Heckman, and D. Warren. A Near-

Term Design for the SeaView Multilevel Database System. In Proceedings 1988

IEEE Symposium on Security and Privacy, pages 234{244, Oakland, 1988. IEEE

Computer Society Press.

[26] R. Meushaw and D. Simard. Nettop. Tech Trend Notes, 9(4):3{10, Fall 2000.



Data Integrity Capacity of Secure Systems 23

[27] National Computer Security Center. Computer Security Requirements, Guidance

for Applying the Department of Defense Trusted Computer System Evaluation

Criteria in Speci�c Environments, CSC-STD-003-85, June 1985.

[28] National Computer Security Center. Department of Defense Trusted Computer

System Evaluation Criteria, DoD 5200.28-STD, December 1985.

[29] National Computer Security Center. Trusted Network Interpretation of the

Trusted Computer System Evaluation Criteria, NCSC-TG-005, July 1987.

[30] National Computer Security Center. A Guide to Understanding Covert Channel

Analysis of Trusted Systems, NCSC-TG-030, November 1993.

[31] National Research Council. Trust in Cyberspace, Washington, DC, 1999. National

Academy Press.

[32] Newsscan.com. Security experts discover rogue code in Microsoft software.

http://catless.ncl.ac.uk/Risks/20.87.html#subj8, April 2000.

[33] B. Pomeroy and S. Weisman. Private Desktops and Shared Store. In Proceedings

14th Computer Security Applications Conference, pages 190{200, Phoenix, AZ,

December 1998.

[34] F. P. Preparata and R. T. Yeh. Introduction to Discrete Structures. Addison-

Wesley Publishing, Co., Reading, MA, 1973.

[35] J. H. Saltzer and M. D. Schroeder. The Protection of Information in Computer

Systems. Proceedings of the IEEE, 63(9):1278{1308, 1975.

[36] R. Schell and D. Denning. Integrity in trusted database systems. In Proceedings

9th DoD/NBS Computer Security Conference, Gaithersburg, MD, September

1986.

[37] M. D. Schroeder, D. D. Clark, and J. H. Saltzer. The Multics Kernel Design

Project. Proceedings of Sixth A.C.M. Symposium on Operating System Princi-

ples, pages 43{56, November 1977.

[38] M. D. Schroeder and J. H. Saltzer. A Hardware Architecture for Implementing

Protection Rings. Comm. A.C.M., 15(3):157{170, 1972.

[39] L. J. Shirley and R. R. Schell. Mechanism Su�ciency Validation by Assignment.

In Proceedings 1981 IEEE Symposium on Security and Privacy, pages 26{32,

Oakland, 1981. IEEE Computer Society Press.

[40] K. Thompson. Reections on Trusting Trust . Communications of the A.C.M.,

27(8):761{763, 1984.

[41] K. B. Walter, W. F. Ogden, W. C. Rounds, F. T. Bradshaw, S. R. Ames, and

D. G. Shumway. Primitive Models for Computer Security. In Case Western

Reserve University Report, ESD-TR-74-117, January 1974. Electronic Systems

Division, Air Force Systems Command.


